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U
ndoubtedly, graphene is currently
one of the hottest materials in na-
noscience and nanotechnology.1 It

possesses great potential applications in
many emerging areas such as next-genera-
tion ultrahigh performance electronics and
transistor logic circuits, sensors, and trans-
parent conductors.2�4 Several schemes have
been proposed to open a tunable bandgap
in graphene, which is required for semicon-
ductor materials.2,5�8 Recently, a strategy of
constructing periodic holes on graphene to
form graphene antidot lattices (GALs) has
been extensively studied.9�15 Theoretical cal-
culations have predicted that antidot lat-
tices change the electronic properties of gra-
phene from semimetallic to semiconducting,
where the opened gap can be tuned by the
size, shape, and symmetry of both the hole
and the lattice cell.9�13,16�19 The induced
gap in GALs is approximately proportional
to the hole diameter and inversely propor-
tional to the superlattice cell area, so one can
achieve a substantial gap value of∼0.2 eV in
a unit cell of 10 nm.9 Accordingly, the trans-
port properties of graphene nanoribbons
(GNRs) are modulated by the existence of
the antidots.20�24 Antidot lattices on gra-
phene also affect the occurrence of flat bands
and collective magnetic behavior, and thus
may lead to applications in storagemedia and
spintronics.9,10,25�30 Alternative periodic per-
turbations by such means as selective ad-
sorption and nanohubs have also been ex-
plored theoretically.31�43

Essential experimental progresses of GALs
havebeen achieved. Graphenefilmswithhole
diameters of 20�150 nmand cell sizes of 35�
400 nm have been successfully fabricated via

electron beam lithography, block copolymer
lithography, and self-assembling of mono-
disperse colloidal microspheres.14,15,44�46

Chemical synthesis has been used to pro-
duce subnanometer holes and periodicity
(porous graphenes), which could be used as

atmospheric nanofilters.47�49 Effects such
as Aharonov�Bohm oscillations, weak loca-
lization, and stiffening in Raman spectros-
copy have been detected on GALs. Some
studies have demonstrated that GALs have
an effective energy gap of 100 meV and an
ON�OFF ratio up to 10, which suggests the
promising value of the scheme of GALs.15,46

A bandgap was also successfully opened in
graphene using an alternative approach of
patterned hydrogenation.50

On examining the published theoretical
works of GALs in the literature, we noticed
that a half of the possible GALs patterns were
unintentionally missed. For example, the unit
cell of hexagonal GALs (Figure 1) was usually
characterized by the side length L, which is
equal to the number of the outermost
carbonatomsoneach side (L=3 in Figure 1a).
To shrink or expand the unit cell, one usually
removed the outermost zigzag carbon chains
or added extra chains outside the cell. This
decreases or increases L by 1, and thus L is an
integer.9,29 However, when the lattices that are
formedafter assembling the cells (Figure 1b,c)
are inspected, it can be seen that thewidthW
of the wall between the nearest-neighboring
holes changes incrementally by 2. With the
above approach, only even values of W are
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ABSTRACT The electronic structure of graphene antidot lattices (GALs) with zigzag hole edges

was studied with first-principles calculations. It was revealed that half of the possible GAL patterns

were unintentionally missed in the usual construction models used in earlier studies. With the

complete models, the bandgap of the GALs was sensitive to the width W of the wall between the

neighboring holes. A nonzero bandgap was opened in hexagonal GALs with even W, while the

bandgap remained closed in those with odd W. Similar alternating gap opening/closing with W was

also demonstrated in rhombohedral GALs. Moreover, analytical solutions of single-walled GALs were

derived based on a tight-binding model to determine the location of the Dirac points and the energy

dispersion, which confirmed the unique effect in GALs.
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considered while the other half (odd W values, see
Figure 1d�f) are overlooked.9�11,13,29 This is particu-
larly apparent for GALs at the extreme end, such as
those composed of connected single carbon chains
with an oddW of 1 (Figure 1f) which are of interest for
their theoretical simplicity (aswill be shownbelow) and
their close relation to the carbon atomic chains.51,52 In
this paper, we calculated the electronic structure of
GALs using density functional theory (DFT) to investi-
gate the different effects of odd and evenW. GALs with
oddW (Figure 1)were found to have unique properties,
such as the bandgap remaining closed.

RESULTS AND DISCUSSION

We considered the graphene hexagonal antidot lat-
tices (GHALs) as shown in Figure 1. Hexagonal holes
with zigzag edges are created. Each system is desig-
nated by the hole radius R and the wall widthW, as {R,
W}. Unlike samples with circular holes,9 R is measured
in aunit as thenumberof the removedhexagonal carbon
chains. So R is an integer and it is related to the number
of removed carbon atoms (Nremoved) by Nremoved = 6R2.
We calculated the electronic structure of the GALs using
the VASP codewithin the generalized gradient approx-
imation (GGA).53 Technical details are provided in the
Methods section. The band structures of the GHALs
with even and oddW are illustrated in Figure 2 for fixed
holes of R = 1. With evenW, the patterning of periodic
holes opened a substantial bandgap around the Fermi
level (Figure 2a). For example, the bandgapof the {1, 2}
GHAL was 1.55 eV, and this decreased as the unit cell
became larger. These results are consistent with previous

studies.9�11,29 However, with odd W, the GHALs dis-
played semimetallic behavior similar to pristine gra-
phene,where theconductionband intersects the valence
band at the K-points (Figure 2b). So, GHALs with oddW

are incapable of opening a bandgap, which was never
recognized before. The different effects of even and
odd W are clearly demonstrated when the bandgap is
shown as a function of W (Figure 2c). The bandgap al-
ternates in a zigzag pattern withW. Experimental results
for GALs suggested that they were semiconductors.15,46

This controversy between theory and experiment is
similar to that in graphene nanoribbons,2,54,55 where only
semiconductorsweredetected inexperimentswhileboth
semiconductors and semimetals were predicted. The
origin of the controversy may include the lack of precise
edge control in device fabrication55 and the influence of
spontaneousedge-defect formation.56Wealsocompared
the relative stability of patternswith variousW (Figure 2d).
It showed that the curve of energy for odd W is over-
lapped with that for even W, so patterns with odd and
evenW are both likely to form in actual fabrications.
The bandgaps of GHALs with Re 6 andWe 10 were

systematically calculated, and an analysis is given in
Figure 3. The bandgaps of GHALs with odd W were all
zero. For systems with evenW, the bandgap decreased
with increasing W (Figure 3a), but it showed a non-
monotonic dependence on R (Figure 3b). Pedersen
et al. presented the following simple scaling rule for the
bandgaps of circular GALs:9

Eg �
N
1=2
removed

Ntotal
(1)

Figure 1. Hexagonal GALs with even and odd wall widthW. The gray and white balls represent carbon and saturated hydrogen
atoms, respectively. (a) A hexagonal unit cell which is characterized by a side length L = 3 and a hole radius R = 1. (b) The
assembly of the unit cells in panel a, resulting in a wall width ofW = 4. A unit cell is highlighted by shading. (c) Unit cells with
L smaller than those in panels a and b by 1 (L = 2) give aW smaller by 2 (W = 2). (d) A unit cell and (e) its assembly into a lattice
with an odd wall width ofW = 3. (f) GALs composed of connected single carbon chains, which have the smallest wall width of
W = 1. The systems are designated by the notation {R, W}.
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where Ntotal is the total number of carbon atoms in the
unit cell before the hole is made, and Nremoved is the
number of removed carbon atoms. The scaling rule
was also validated by Liu et al. for triangular and
rhombus holes.17 In our case, a description of Eg with
eq 1 was not satisfactory (inset of Figure 3c). To better
describe the Eg values, we introduced an exponential
function into eq 1, and the numerical fitting gives

Eg ¼ 19:45 exp(�14:57N�0:917
total � 47:50C1:140

removed

þ 51:54N�0:029
total C1:094

removed)
N
1=2
removed

Ntotal
(2)

where Cremoved = Nremoved/Ntotal is the ratio of the
removed carbon atoms. Equation 2 described the
calculated Eg values well (Figure 3c). For large struc-
tures (large Ntotal), the asymptotic scaling of eq 2
converged to the earlier law of eq 1.
Recently, Clar sextet theory was applied to analyze

the gap opening/closing of GALs and it was proposed
that the number of sextets for patterns with a large
bandgapwas larger than one-third of the total number
of hexagons.57 However, we find that this rule is not

applicable to GHALs we studied here. For a GHALs pat-
tern {R,W}, there are R hexagons on the zigzag edge of
each side, and at most one of them can be assigned to
be sextet, so the ratio of sextet among hexagons is low
although the gap may be opened. For example, the
sextet ratio of the GHALs {3,2} is 3/11, less than one-
third, but the opened gap is as large as 0.73 eV.
Bandgap closing and the energy dispersion near the

Fermi level of GHALs can be understood through the
analytical solution of a Hückel tight-binding (TB)model
for the extreme single-walled cases (W = 1). Under the
TB framework, only the topological connection (bonding)
between carbon atoms is important, so the unit cell of
the single-walled GHALs can be generally described by
a topological structure shown in Figure 4a. It is com-
posed of three interconnected carbon chains, each of
which contains n carbon atoms. For pristine graphene
n = 2. The hole size R of the single-walled GHALs is
related to n by n = 2Rþ 2when n is even (see Figure 4b
for an example of n = 4). We also considered the cases
of odd n (see Figure 4c for n = 5). The holes with odd n

are not exactly hexagonal in real space since they are

Figure 2. Effects of thewall widthWon the electronic structure of GHALswithR=1. (a,b) Energy band structures of theGHALs
with even (a) and odd (b)W. The systemnotion {R,W} and the atomic structures of unit cell are shown at the top of the panels.
The Fermi level is indicatedwith a black dashed line. (c) The bandgap of GHALs as a function ofW. (d) The energy (per C atom)
of GHALs as a function of W. The dashed line indicated the corresponding value of the pristine graphene.
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centered at carbon atoms instead of the pristine hexa-
tomic ring centers. It is recognized thatn=3corresponds
to the case with single vacancy defects. However, they

are equivalently hexagonal under the TB framework
and can be considered with the same theory and
included into the family of single-walled GHALs. Both

Figure 3. Bandgaps of GHALs. (a) The bandgap as a function ofWwith R = 1 and R = 2. (b) The bandgap as a function of R for
various W values. Symbols in panels a and b are data points from DFT calculations, and solid lines are global fitting curves
obtained with eq 2. (c) Comparison between bandgaps of GHALs with evenW from DFT calculations and the formulated (fitting)
values of eq 2. The inset presents the comparison with eq 1. (d) The bandgaps as functions of R and W.

Figure 4. Analysis of the single-walled GHALs. (a) Topological structure of the unit cell of single-walled GHALs with n carbon
atoms on each side edge of the hexagon; a1 and a2 denote the basic vectors. (b,c) Examples of single-walled GHALs with n = 4
andn=5, respectively. Saturatedhydrogenatoms are not shown. (d) TheDFT calculated relative Fermi velocity vF(n)/vF

(0) (symbols)
comparedwith the predicted values from eq 3 (solid lines). (e,f) TheDFTband structures of the single-walledGHALswith even
and odd n. The Fermi level is indicated by a horizontal dashed line.
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the Dirac points and energy dispersion were determined
analytically for single-walled GHALs with even and odd
n (see Supporting Information for details). It was pre-
dicted that the bandgap would remain closed no matter
whether n is even or odd, but the Dirac points were at
the K points when nwas even, while at the Γ point when
n was odd. The energy dispersion would be isotropic
and cone-like as with pristine graphene, and the Fermi
velocity vF would depend on n as follows:

vF(n) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3(n � 1)2

p
3n � 4

v(0)F , (even n)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(n � 1)
3n � 5

r
v(0)F , (odd n)

8>>><
>>>:

(3)

where vF
(0) is the Fermi velocity of the pristine graphene

(n = 2). To verify the predictions, we calculated the DFT
band structures of the single-walled GHALs (Figure 4e,
f). As predicted, the systems remained gapless with the
valence and conduction bands touching at K points for
even n (Figure 4e). For odd n (Figure 4f), a flat band
occurred at E = 0 (except the abnormal case of n = 3,
whichmaybe causedby interactions of three saturated
hydrogenatoms in the single vacancywhere they arevery
close to each other). This is consistent with our analytical
solution aswell as the general symmetry consideration on
thebipartite lattice structureof graphene.29,58 Thevalence
band approaches the conduction band at the predicted
Γ point, but leaves a small gap. The calculated dispersion
was fitted with E(k) = ((kvF)

2 þ (Δ/2)2)1/2 to extract the
Fermi velocity vF for odd n, and the numerical values and
thepredictedvalues fromeq3were comparedalongwith
those for even n in Figure 4d. The agreement was
excellent for both even and odd n.
Shima and Aoki investigated the electronic structure

of systems with honeycomb symmetry and showed
that the bipartite systems could be classified into semi-
metals and semiconductors with a simple criterion.59

The qualitative property of the bandgap opening/
closing of GHALs revealed above is consistent with
their criterion. To clarify whether the sensitivity of the
bandgap opening/closing with respect to W was gen-
erally applicable to other zigzag-edged GALs without
honeycomb symmetry, we studied graphene rhombo-
hedral antidot lattices (GRALs, Figure 5a) where both
unit cells and holes are rhombohedral. Similar to the
GHALs, the single-walledGRALs displayed semimetallic
behavior with a gapless k-linear dispersion (Figure 5b).
The Dirac points of the single-walled GRALs were alter-
nately located at two positions when the hole size R

increased. It is noted that theDirac points donot coincide
with those in GHALs (Figures 2 and 4). The TB analytical
solution of single-walled GRALs (see Supporting Infor-
mation) predicted the Dirac points were at K/2 when R

was odd, while at Kwhen Rwas even. The DFT numerical
results on Dirac points are close to the TB predictions,
with a small shift away from Γ (note that M is on the
extension lineofΓ�K in theexpandedBrillouingraphics).

When W increased, the bandgap of the GRALs was
opened and closed in a regular manner for the systems
we examined. For example, the bandgap was opened
forW = 3kþ 2, while it was closed forW = 3k or 3kþ 1
(Figure 5c). A further detailed calculationwith a TBmodel

Figure 5. Atomic and band structures of GRALs. (a) Examples
of GRALs which are characterized by the hole size R and the
wall widthW, {R,W}. (b) Energy band of single-walled GRALs
with various R. (c) Effects ofW on the energy band of GRALs
when R is fixed as 2.

Figure 6. Band structures of GRALs obtainedbynumerically
solving the TB model. The hopping parameter t0 is 2.8 eV.
R = 1, 2, 3, and 4 for panel lines from top to bottom. The left,
middle, and right columns correspond to subgroups with
W=3kþ 1, 3kþ 2, and 3k, respectively. Only the conduction
band is shown.
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confirmed the existence of a period of ΔW = 3 (Figure
6). When the spin polarization is considered, a further
bandgap opening may be induced as shown by Liu
et al.,17 but this was not investigated in this paper. The
existence of a period of three for the bandgap has been
observed in armchair graphene nanoribbons (AGNRs)
and GALs with armchair hole-edges when increasing
the ribbon/wall width,2,17,60 which originates from the
discrete k-lines of the allowed electronic states of the
armchair systems.61 However, the period of three for
the zigzag-edgedGRALs cannot be explained by such a
consideration because zigzag graphene nanoribbons
(ZGNRs) are all metallic with edge states that are not
dependent on the width.62 So it is a novel property.
The existence of the bandgap opening and closing also
confirms the complexity of the electronic properties of
GALs, which may have been missed in earlier studies.

CONCLUSIONS

In summary, first-principles calculations were used
to study the electronic properties of zigzag-edged

GALs and investigate the patterns that were missed
in earlier studies. The general consensus has been
that antidot patterning will open a bandgap in
graphene. However, we found that a half of the
possible GALs patterns were unintentionally ne-
glected in earlier studies because of a problem with
construction of the unit cell. Calculations on the
complete set of hexagonal GALs showed that sys-
tems with even W were typical semiconductors,
while those with odd W were semimetals with
closed bandgaps as in pristine graphene. The sensi-
tivity of the band structure with respect to W was
also observed in rhombohedral GALs, which sug-
gests this unique property is generally applicable.
Analytical solutions for the single-walled GALs were
obtained under a TB model to determine the loca-
tion of the Dirac points and the energy dispersion
near the Fermi level. The sensitive gap opening/
closing revealed in our work may be useful for future
design of GALs for their potential applications in
graphene-based nanoelectronics.

METHODS
The structural optimizations and electronic structure calcula-

tions were performed using the Vienna ab initio simulation
package (VASP),53 which is based on density functional theory
(DFT) and plane-wave pseudopotential method. The plane-
wave cutoff energy is 400 eV for all calculations. The generalized
gradient approximation (GGA)63 and the Perdew-Burke-Ernzer-
hof (PBE) exchange-correlation function64 are chosen. All geo-
metry optimizations and electronic structure calculations are
performed using periodic boundary conditions, and Brillouin-
zone integrations are performed using a 11 � 11 � 1 Mon-
khorst�Pach (MP) grid.65 Criterion of convergence is selected
that the residual forces are smaller than 0.01 eV/Å, and the
change of total energy is smaller than 10�4 eV. To avoid the
affect of layers, each graphene plane is separated by greater
than 10 Å of vacuum in our calculation.
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